12 research outputs found

    Metoda potpornih vektora u procjeni utjecaja karakteristika unaprijednih osmotskih membrana na zadržavanje organskih molekula

    Get PDF
    The forward osmosis (FO) process is currently being studied more despite other energy-consuming processes. In addition, several works show the performance of FO membranes as its major challenges, the study of the rejection of different molecules, energy consumption, and modelling of different objectives related to this process. The main purpose of our study was to evaluate the impact of the FO membranes characteristics on the rejection of organic molecules (neutral) by modelling of the latter. However, the current work deals with the application of Support Vector Machines (SVM) for predicting the rejection of organic molecules (53) by the FO membranes. In addition, the SVM model was compared with two other models: Artificial Neural Network (ANN) and Multiple Linear Regression (MLR). The coefficient of correlation (R) for the testing data was applied to display the best SVM model. The SVM model generated with Radial Basis Function (RBF) as the kernel function showed the best R value equal to 0.8526. MLR and ANN models had R values of 0.7630 and 0.8723, respectively.Proces unaprijedne osmoze (FO) trenutačno se učestalo proučava, a glavne su tematike zadržavanje različitih molekula, potrošnja energije i modeliranje samog procesa. Glavna svrha ovog istraživanja bila je, primjenom modeliranja, procijeniti utjecaj karakteristika FO membrana na zadržavanje neutralnih organskih molekula. Rad je fokusiran na primjenu metode potpornih vektora (engl. Support Vector Machines, SVM) za predviđanje zadržavanja organskih molekula (53) FO membranama. Razvijeni SVM model uspoređen je s dva druga modela: modelom umjetne neuronske mreže i modelom višestruke linearne regresije. SVM model generiran uz radijalnu baznu funkciju pokazao je najbolju vrijednost koeficijenta korelacije u iznosu 0,8526. Vrijednosti koeficijenta korelacije kod modela umjetne neuronske mreže i modela višestruke linearne regresije iznosile su 0,7630, odnosno 0,8723

    Neural network for prediction solar radiation in Relizane region (Algeria) - Analysis study

    Get PDF
    The global solar radiation prediction is the most necessary part of the project and performance of solar energy applications. The objective of the present work is to predict global solar radiation (GSR) received on the horizontal surface using an artificial neural network (ANN). For the city (Relizane) in the west region of Algeria. The inputs used in the neural network are: time (h), day, month, year, temperature (k), relative humidity (%), pressure (mbar), wind speed (m/s), wind direction (°), and rainfall (kg/m2). The neural network-optimal model was trained and tested using 80 %, and 20 % of whole data, respectively. The best results were obtained with the structure 10-25-1 (10 inputs, 25 hidden, and 1 output neurons) presented an excellent agreement between the calculated and the experimental data during the test stage with a correlation coefficient of R = 0.9879, root means squared error of RMSE = 47.7192 (Wh/m2), mean absolute error MAE = 27.7397 (Wh/m2), and mean squared error MSE = 2.2771e+03(Wh/m2), considering a three-layer Feedforward neural network with Regularization Bayesienne (trainbr)  training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. The results demonstrate proper ANN’s predictions with a root mean square error (RMSE) of less than 0.50 (Wh/m2) and coefficient of correlation (R) higher than 0.98, which can be considered very acceptable. This model can be used for designing solar energy systems in the hottest regions

    Usporedba modela “neuronskih mreža i višestrukih linearnih regresija” za opisivanje odbacivanja mikroonečišćivala membranama

    Get PDF
    A rejection process of organic compounds by nanofiltration and reverse osmosis membranes was modelled using the artificial neural networks. Three feed-forward neural networks based on quantitative structure-activity relationship (QSAR-NN models) characterised by a similar structure (twelve neurons for QSAR-NN1, QSAR-NN2, and QSAR-NN3 in the input layer, one hidden layer and one neuron in the output layer), were constructed with the aim of predicting the rejection of organic compounds. A set of 1394 data points for QSAR-NN1, 980 data points for QSAR-NN2, and 436 data points for QSAR-NN3 were used to construct the neural networks. Good agreements between the predicted and experimental rejections were obtained by QSAR-NN models (the correlation coefficient for the total dataset were 0.9191 for QSAR-NN1, 0.9338 for QSAR-NN2, and 0.9709 for QSAR-NN3). Comparison between the feed-forward neural networks and multiple linear regressions based on quantitative structure-activity relationship “QSAR-MLR” revealed the superiority of the QSAR-NN models (the root mean squared errors for the total dataset for the QSAR-NN models were 10.6517 % for QSAR-NN1, 9.1991 % for QSAR-NN2, and 5.8869 % for QSAR-NN3, and for QSAR-MLR models they were 20.1865 % for QSAR-MLR1, 19.3815 % for QSAR-MLR2, and 16.2062 % for QSAR-MLR3). This work is licensed under a Creative Commons Attribution 4.0 International License.Postupak odbacivanja organskih spojeva nanofiltracijom i membranama reverzne osmoze modeliran je umjetnim neuronskim mrežama. Konstruirane su tri neuronske mreže zasnovane na kvantitativnom odnosu strukture-aktivnosti (QSAR-NN modeli) karakterizirane sličnom strukturom (dvanaest neurona za QSAR-NN1, QSAR-NN2 i QSAR-NN3 u ulaznom sloju, jedan skriveni sloj i jedan neuron u izlaznom sloju), s ciljem predviđanja odbacivanja organskih spojeva. Za izgradnju neuronskih mreža upotrijebljeni su skupovi od 1394 podatkovnih točaka za QSAR-NN1, 980 podatkovnih točaka za QSAR-NN2 i 436 podatkovnih točaka za QSAR-NN3. Dobre usklađenosti između predviđenih i eksperimentalnih odbacivanja dobivene su modelima QSAR-NN (korelacijski koeficijent za ukupni skup podataka bio je 0,9191 za QSAR-NN1, 0,9338 za QSAR-NN2 i 0,9709 za QSAR-NN3). Usporedba neuronskih mreža i višestrukih linearnih regresija zasnovanih na kvantitativnom odnosu struktura-aktivnost “QSAR-MLR” otkrila je superiornost modela QSAR-NN (korijenske srednje kvadratne pogreške za ukupni skup podataka za modele QSAR-NN bile su 10,6517 % za QSAR-NN1, 9,1991 % za QSAR-NN2, i 5,8869 % za QSAR-NN3, a za modele QSAR-MLR 20,1865 % za QSAR-MLR1, 19,3815 % za QSAR-MLR2, i 16,2062 % za QSAR-MLR3). Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna

    Strojno učenje i neuronske mreže u modeliranju zadržavanja polarnih farmaceutski aktivnih tvari nanofiltracijom i reverznom osmozom

    Get PDF
    The retention of polar pharmaceutical active compounds (PPhACs) by nanofiltration and reverse osmosis (NF/RO) membranes is of paramount importance in membrane separation processes. The retention of 21 PPhACs was correlated using artificial intelligence techniques: multi-layer perceptron (MLP), feedforward neural network with radial basis function (RBF), and support vector machine (SVM). A database of 541 retention values has been collected from the literature. The results showed a high predictive capacity of the MLP model for the retention of PPhACs by NF/RO with a very high correlation coefficient (R = 0.9714) and a very low root mean squared error (RMSE = 3.9139 %) for the entire data set. The comparison between the three models showed the superiority of the MLP model. The sensitivity analysis emphasised that the retention of PPhACs is governed by three interactions arranged in descending order: polarity interactions (hydrophobicity/hydrophilicity), electrostatic repulsion, and steric hindrance. This research suggests that the PPhACs retention on the NF/RO membrane strongly depends on the topological polar surface area.Zadržavanje polarnih farmaceutski aktivnih tvari (PPhAC) tijekom nanofiltracije i reverzne osmoze (NF/RO) od iznimne je važnosti u membranskim separacijskim procesima. Membransko zadržavanje 21 PPhAC-a korelirano je sa svojstvima PPhAC-a, karakteristikama membrane i uvjetima provedbe procesa filtracije. Pri tome su primijenjene tehnike umjetne inteligencije: višeslojni perceptron (MLP), neuronska mreža s radijalnom baznom funkcijom (RBF) i metoda potpornih vektora (SVM). Iz literature je prikupljena 541 vrijednost zadržavanja. Rezultati su pokazali visok kapacitet predviđanja MLP modela za cijeli skup podataka, s vrlo visokom vrijednošću koeficijenta korelacije (R = 0,9714) i vrlo niskom vrijednošću korijena srednje kvadratne pogreške (RMSE = 3,9139 %). Usporedba s preostala dva modela (RBF i SVM) pokazala je superiornost MLP modela. Analiza osjetljivosti ukazala je na to da zadržavanjem PPhAC-a upravljaju tri interakcije i to (padajućim redoslijedom): polarne interakcije (hidrofobnost/hidrofilnost), elektrostatsko odbijanje i steričke smetnje. Provedenoo istraživanje sugerira da zadržavanje PPhACs na NF/RO membrani snažno ovisi o topologiji polarne površine

    Developed nonlinear model based on bootstrap aggregated neural networks for predicting global hourly scale horizontal irradiance

    Get PDF
    This research study examines the use of two models of artificial intelligence based on a single neural network (SNN) and bootstrap aggregated neural networks (BANN) for the prediction value of hourly global horizontal irradiance (GHI) received over one year in Tamanrasset City (Southern Algeria). The SNN and BANN were created using overall data points. To improve the accuracy and durability of neural network models generated with a limited amount of training data, stacked neural networks are developed. To create many subsets of training data, the training dataset is re-sampled using bootstrap re-sampling with replacement. A neural network model is created for each set of training datasets. A stacked neural network is created by combining multiple individual neural networks (INN). For the testing phase, higher correlation coefficients (R = 0.9580) were discovered when experimental global horizontal irradiance (GHI) was compared to predicted global horizontal irradiance (GHI). The performance of the models (INN, BANN, and SNN) demonstrates that models generated with BANN are more accurate and robust than models built with individual neural networks (INN) and (SNN)

    An artificial intelligence approach for modeling the rejection of anti-inflammatory drugs by nanofiltration and reverse osmosis membranes using kernel support vector machine and neural networks

    Get PDF
    The rejection of anti-inflammatory drugs by membranes has shown paramount importance in separation membrane processes such as nanofiltration and reverse osmosis (NF/RO) membranes for pharmaceutical industries. Therefore, the main objective of this paper is to use support vector machine (SVM) and artificial neural network (ANN) to model the rejections of anti-inflammatory drugs by NF/RO membranes using 300 experimental data points gathered from the literature. Both approaches (ANN and SVM) gave close results with a slight superiority of the neural networks model demonstrated by its correlation coefficient (R) and root mean square error (RMSE) values of 0.9930 and 1.8094% respectively, in contrast to 0.9900 and 2.2355% for SVM. Sensitivity analysis by the weight method demonstrates that the most relevant variables that influence the rejection of anti-inflammatory drugs are: effective diameter of an organic compound in water “dcd_{{c}}”, molecular length, contact angle, and zeta potential. These input relevant variables have a significant contribution (relative importance superior to 10%)

    An artificial intelligence approach for modeling the rejection of anti-inflammatory drugs by nanofiltration and reverse osmosis membranes using kernel support vector machine and neural networks

    Get PDF
    The rejection of anti-inflammatory drugs by membranes has shown paramount importance in separation membrane processes such as nanofiltration and reverse osmosis (NF/RO) membranes for pharmaceutical industries. Therefore, the main objective of this paper is to use support vector machine (SVM) and artificial neural network (ANN) to model the rejections of anti-inflammatory drugs by NF/RO membranes using 300 experimental data points gathered from the literature. Both approaches (ANN and SVM) gave close results with a slight superiority of the neural networks model demonstrated by its correlation coefficient (R) and root mean square error (RMSE) values of 0.9930 and 1.8094% respectively, in contrast to 0.9900 and 2.2355% for SVM. Sensitivity analysis by the weight method demonstrates that the most relevant variables that influence the rejection of anti-inflammatory drugs are: effective diameter of an organic compound in water “dcd_{{c}}”, molecular length, contact angle, and zeta potential. These input relevant variables have a significant contribution (relative importance superior to 10%)

    Usporedna studija predviđanja koeficijenta molekularne difuzije za polarni i nepolarni binarni plin pomoću neuronskih mreža i višestrukih linearnih regresija

    Get PDF
    In the current study, an artificial neural network (ANN) and multiple linear regressions (MLR) have been used to develop predictive models for the estimation of molecular diffusion coefficients of 1252 polar and non-polar binary gases at multiple pressures over a wide range of temperatures and substances. The quality and reliability of each method were estimated in terms of the correlation coefficient (R), mean squared errors (MSE), root mean squared error (RMSE), and in terms of external validation coefficients (Q2ext). The comparison between the artificial neural network (ANN) and the multiple linear regressions (MLR) revealed that the neural network models showed a good predicting ability with lower errors (the roots of the mean squared errors in the total database were 0.1400 for ANN1 and 0.1300 for ANN2), and (root mean squared errors in the total databases were 0.5172 for MLR1 and 0.5000 for MLR2). This work is licensed under a Creative Commons Attribution 4.0 International License.U ovoj studiji primijenjene su umjetna neuronska mreža (ANN) i model višestruke linearne regresije (MLR) za razvoj prediktivnih modela za procjenu koeficijenata molekularne difuzije 1252 polarnih i nepolarnih binarnih plinova pri višestrukim tlakovima u širokom rasponu temperatura i tvari. Kvaliteta i pouzdanost svake metode procijenjeni su pomoću korelacijskog koeficijenta (R), srednjih kvadratnih pogrešaka (MSE), korijena srednje kvadratne pogreške (RMSE) te koeficijenata vanjske validacije (Q2ext). Usporedba između umjetne neuronske mreže (ANN) i višestrukih linearnih regresija (MLR) otkrila je da modeli neuronske mreže pokazuju dobru sposobnost predviđanja s nižim pogreškama (korijeni srednjih kvadratnih pogrešaka u ukupnoj bazi podataka bili su 0,1400 za ANN1 i 0 (1300 za ANN2 a pogreške korijena srednje vrijednosti u ukupnim bazama podataka bile su 0,5172 za MLR1 i 0,5000 za MLR2). Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna

    QSPR studije karbonilnih, hidroksilnih, polienskih indeksa i prosječne molekulske težine polimera pod fotostabilizacijom pristupom ANN i MLR

    Get PDF
    One of the main disadvantages of the use of synthetic or semi-synthetic polymeric materials is their degradation and aging. The purpose of this study was to use artificial neural networks (ANN) and multiple linear regressions (MLR) to predict the carbonyl, hydroxyl, and polyene indices (ICO, IOH, and IOP), and viscosity average molecular weight (MV) of poly(vinyl chloride), polystyrene, and poly(methyl methacrylate). These physicochemical properties are considered fundamental during the study of photostabilization of polymers. From the five repeating units of monomers, the structure of the polymer studied is shown. Quantitative structure-property relationship (QSPR) models obtained by using relevant descriptors showed good predictability. Internal validation {R2, RMSE, and Q2LOO}, external validation {R2, RMSE, Q2pred, rm2, Δrm2, k, and k’}, and applicability domain were used to validate these models. The comparison of the results shows that the ANN models are more efficient than those of the MLR models. Accordingly, the QSPR model developed in this study provides excellent predictions, and can be used to predict ICO, IOH, IOP, and MV of polymers, particularly for those that have not been tested. This work is licensed under a Creative Commons Attribution 4.0 International License.Jedan od glavnih nedostataka upotrebe sintetičkih ili polusintetičkih polimernih materijala je njihova razgradnja i starenje. Svrha ove studije je primjena umjetnih neuronskih mreža (ANN) i višestrukih linearnih regresija (MLR) za predviđanje karbonilnih, hidroksilnih i polienskih indeksa (ICO, IOH i IOP) i prosječne molekulske mase viskoznosti (MV) poli(vinil-klorida), polistirena i poli(metil metakrilata). Ta fizikalno-kemijska svojstva smatraju se važnim tijekom proučavanja fotostabilizacije polimera. Iz pet ponavljajućih jedinica monomera prikazana je struktura ispitivanog polimera. Kvantitativni modeli odnosa strukture-svojstava (QSPR) dobiveni primjenom relevantnih deskriptora pokazali su dobru predvidljivost. Za potvrdu tih modela provedene su: interna provjera {R2, RMSE i Q2LOO}, vanjska provjera {R2, RMSE, Q2pred, rm2, Δrm2, k i k’} i domena primjenjivosti. Usporedba rezultata pokazuje da su modeli ANN učinkovitiji od modela MLR. Prema tome, model QSPR razvijen u ovoj studiji pruža izvrsna predviđanja i može se primjenjivati za predviđanje ICO, IOH, IOP i MV polimera, posebno za one koji nisu testirani. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna
    corecore